» 4
Au-Zone

Technologies Inc.

DeepViewR]

PoseNet Skeletons Demo QML

Au-Zone Technologies Inc.

January 27, 2020

DeepViewRT PoseNet Skeletons Demo QML

Contents

Introduction 2

Obtaining Models 2

Sample Project 3

Sample Project Architecture 5
PoseNet Model 6
ProcessSkeleton.cpp 7
decodeMulticpp L 7
QML . e 7
Camera QML Type e 7
VideoOutput QML Type o 7
DeepViewRT QML Types o o 8
Model o e 8
Loadinga Model e 9
VideoCapture 9
ProcessSkeleton 9
Overlay e 10

Appendix 11
Settinga Normalization e 11
Custom Models 12

Au-Zone Technologies Inc. 1

DeepViewRT PoseNet Skeletons Demo QML

Introduction

This article details the DeepViewRT Skeletons sample. The demo will demonstrate an application built using
QML that can detect and overlay an outline of a person or persons’ joints and limbs onto a video feed using
a PoseNet model. PoseNet is a model trained by researchers for human pose estimation and is based on
the MobileNet model. This demo is not meant to showcase the usefulness of PoseNet but simply to show
how the integration of DeepView Quick with a pose estimation model can be accomplished in QML, leaving

morte interesting applications as an exercise to the reader.

Obtaining Models

Since PoseNet originates from Tensorflowjs it is difficult to obtain a regular Tensorflow graph of the model.
For a quick start, Tensorflow provides a single person tflite model. The single person model has very simple

decoding. However, it is a large model so it is quite slow and only supports detection of one person.
Consult our article on obtaining models for more details.

The single-pose model can be obtained from here. The multi-pose model is from Tensorflowjs, so it is more

involved to convert to a regular Tensorflow model, but this GitHub repository allows one to do so.

Au-Zone Technologies Inc. 2

https://deepview.zendesk.com/hc/en-us/articles/360038487972-Obtaining-Models
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://github.com/rwightman/posenet-python

DeepViewRT PoseNet Skeletons Demo QML

Sample Project

1. Video Area 2. Camera Options

3. Model Box

4, Model Information

5. Pose Options

6. Load Model Button

Figure 1: Main Window

Models can be uploaded to the interface by simply dragging them to the model box atea or by pressing
the “Load Model” button. Once a model is uploaded, the application will begin evaluating and displaying

poses.

There are 6 major sections of this application defined in the QML UI file.

1. Video Area - This is the area that will contain the video. This area is made from a QML Rectangle. In

the Main.qml file there is a VideoOutput that has the anchors.fill property set to fill this Rectangle.
2. Camera Options - Allows user to change the resolution setting of the camera.

3. Model Box - Contains information and settings related to the DeepViewRT model. An RTM model

can be dragged into this area to load the model.

4. Model Information - Contains information and performance timings on the current model. Labels

are updated when a new model is loaded. Timings are updated when a new image is evaluated.

5. Pose Options -

* Max Number of Skeletons: The maximum number of skeletons that will be displayed on the

screen at one time.

Au-Zone Technologies Inc. 3

DeepViewRT PoseNet Skeletons Demo QML

* Min Skeleton Confidence Score: The minimum confidence score needed to display a detected

skeleton.

* Min KeyPoint Confidence Score: The minimum confidence score needed to display any indi-

vidual keypoint within a skeleton.

6. Load Model Button - Press the button to open a “load model” QML FileDialog and select a Deep-
ViewRT model file. The DeepViewQuick Model QML object calls its loadModel() function to load

the selected model.

Au-Zone Technologies Inc. 4

DeepViewRT PoseNet Skeletons Demo QML

Sample Project Architecture

Model Output

DeepView-Quick Custom C++

ModelEvaluator
\ Pose Array

Model ProcessSkeleton / DecodeMulti

Video Output

VideoCapture

DeepView-Quick

Figure 2: Project Architecture

Au-Zone Technologies Inc. 5

DeepViewRT PoseNet Skeletons Demo QML

The DeepView Quick classes, Model, ProcessSkeleton and VideoCapture, are initialized in the main.qml file.
It is there that you can declare any settings for the classes and also define actions to be taken when signals

are received. In custom C++ classes, you can define custom detection algorithms.

PoseNet Model

The PoseNet model is evaluated in two steps.

1. An RGB image is input into the convolutional neural network. This application handles this step using

the DeepViewQuick classes

2a. In the case of a multi-pose model. The multi-pose decoding algorithm decodes the model’s output into

poses, pose confidence scores, keypoint positions, and keypoint confidence scores

2b. In the case of a single-pose model. The single-pose decoding algorithm decodes the model’s output into

a single keypoint positions vector and their confidences. The format remains the same regardless.
Poses: This is a vector that contains a list of keypoints and a confidence score for each pose.
Pose Confidence Score: The overall confidence ranging between 0.0 and 1.0 that a pose exists in the image.

Keypoints: The output of the model is an array of 2D keypoints (x, y) based on the dimensions of the original

image. These keypoints are arranged in the following order.

0. nose
1. leftEye

2. rightEye

3. leftEar

4. rightEar

5. leftShoulder
6. rightShoulder
7. leftElbow
8. rightElbow
9. leftWrist
10. rightWrist
11. leftHip

12. rightHip
13. leftKnee
14. rightKnee
15. leftAnkle
16. rightAnkle

Au-Zone Technologies Inc. 6

DeepViewRT PoseNet Skeletons Demo QML

Keypoint Confidence Score: The overall confidence ranging between 0.0 and 1.0 that a keypoint exists within

a pose.

For more information, please see this GitHub repository: https://github.com/tensorflow/tfjs-models/tre

e/mastet/posenct

ot see this blog post: https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browset-

with-tensorflow-js-7dd0bc881cd5

ProcessSkeleton.cpp

This QML Class is written in a custom C++ class. It takes the output of each model inference and calls all the
required functions needed to determine the coordinates of each keypoint in the current pose. It then emits
signals back to the QML that contains the keypoint information. Currently, the emitted signal contains two
ordered arrays. One of these arrays contains the x coordinate of each keypoint in a pose. The other array is

the y coordinates. These two arrays are combined back into a point array from the QML slot.

decodeMulti.cpp

This is a custom C++ class for decoding the output of a model and is called from the ProcessSkeleton class.
The model output does not simply provide the keypoints but instead provides more complex information
that can be decoded into the keypoint information. The keypoint information returned will differ based on

the settings provided to the decodeMulti class.

QML
Camera QML Type

The Camera QML Type allows you to receive video frames from a camera. It also allows you to define many

properties depending on your cameras support for these properties.

VideoOutput QML Type

The VideoOutput QML Type is used to display the video output from a certain source. The source property

must be set to the source item which is providing the video frames such as a MediaPlayer or Camera Item.

Au-Zone Technologies Inc. 7

https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5

DeepViewRT PoseNet Skeletons Demo QML

DeepViewRT QML Types

The DeepViewRT QML library contains several classes that can be registered as QML Types to assist in
developing QML applications which make use of neural network models. To use the DeepViewRT QML

plugin simply import using the following.

import DeepViewRT 2.0

Model

The Model C++ class is used to upload and interact with neural network models through QML.

After importing the DeepViewQuick library, a Model QML Item can be created and given an id as shown
below. It is here that you can declare any Model class settings or signals. For example, the code below shows
a new Model object being declared and defining how to change the content of some QML labels with data
from the model every time a new model is loaded. It also shows how to display timing information from

signals emitted each time the model is run.

The captureNext function belonging to the VideoCapture class is called as a new model is loaded in order to
start capturing new images to be evaluated by the model. Async is set to false by default due to performance
issues with it enabled as well as the skeletons not lining up with what is on screen as well. If you prefer

smooth video to inference speed you can turn it on.

Model {

id: deepviewModel

async: false

onModelChanged: {
// Capture first image
capture.captureNext()
// Update labels in the model information section
mainForm.modelName.text = name
mainForm.modelSize.text = Math.round(size / 1024) + " KB";
mainForm.modellLabels.text = labelCount;

// Update timings labels

onInputTimeChanged: mainForm.modelInputTime.text =
(nanoseconds / 1le6).toPrecision(3) + "ms";

onRunTimeChanged: mainForm.modelRuntime.text =
(nanoseconds / 1le6).toPrecision(3) + "ms";

Au-Zone Technologies Inc. 8

DeepViewRT PoseNet Skeletons Demo QML

Loading a Model

A model can be load by passing a file path to the loadModel() function. The example below shows how to
load a model from the QML FileDialog

FileDialog {
id: loadModelDialog
title: "Load Model"
folder: shortcuts.home
nameFilters: ["RTM Models (*.rtm)"]
onAccepted: {
// Get the file path of the chosen model
var fileName = loadModelDialog.fileUrl.toString()

// Load the model. Print error message if unsuccessful

console.log("loading model " + fileName)

if (!model.loadModel(fileName)) {
console.log(model.errorString())

VideoCapture

The VideoCapture C++ class is used to classify video feeds through QML.

After importing the DeepViewQuick library, a VideoCapture QML Item can be created and given an id as
shown below. In the below example, the autoCapture setting is set to false which means the captureNext
function will need to be called manually before the next image is captured. The slot “onlmageCaptured” is
defined to evaluate (model inference and post processing) an image and then wait for the next image to be

captured.

VideoCapture {
id: capture
autoCapture: false
onImageCaptured: {
evaluator.evaluate(image)

}
onCaptureTimeChanged: mainForm.captureTime.text = (captureTime /
< leb).toPrecision(3) + "ms"
}
ProcessSkeleton

The ProcessSkeleton class is derived from the ModelEvaluator class. The ModelEvaluator C++ class is used

to evaluate models through QML using a given neural network model. As a derived class of ModelEvaluator,

Au-Zone Technologies Inc. 9

DeepViewRT PoseNet Skeletons Demo QML

ProcessSkeleton is able to override the ModelEvaluators run() function allowing you to first run the model

and then do all the necessary post processing before emitting the modelEvaluated signal.

A ProcessSkeleton QML Item can be created and given an id as shown below. In the below example, a Model

class object is attached to the ProcessSkeleton Item and the normalization is set to Signed.

When the ProcessSkeleton object receives a signal of ”modelEvaluated”, it calls the captureNext function
belonging to the VideoCapture class. This causes VideoCapture to capture another image and perform

another evaluation on it.

ProcessSkeleton {
id: evaluator
model: model
crop: getCrop()
normalization: Model.Signed
onErrorChanged: {
if (!model.fileName) {
console.log("No model loaded.");
} else if(error) { // Handle error cleared signals

console.log("Evaluator error: " + error);

}
onModelEvaluated: {
capture.captureNext()

In this example, a crop is set on the ProcessSkeleton since PoseNet requires a square image. The function
to determine the largest square crop possible is shown below where newX is the new x location of the

determined crop. The input to the crop setting is a Qt rect basic type.

function getCrop() {
var height = camera.viewfinder.resolution.height
var width = camera.viewfinder.resolution.width
var newX = parselnt((width / 2) - (height / 2))
return Qt.rect(newX, 0, height, height)

Overlay

The skeleton connection lines and nodes ate drawn using multiple QML Shape objects. At the start of the
application, the maximum of 17 skeletons are generated with their visibility set to false. When there is a
detection to be displayed, the corresponding skeleton’s visibility is set back to true. The code required to

generate a skeleton is shown below.

function generateSkeletons(num) {
)

{

for (var i = 0; i < num; i++

Au-Zone Technologies Inc. 10

DeepViewRT PoseNet Skeletons Demo QML

var component = Qt.createComponent("Skeleton.qml")

var skeleton = component.createObject(viewfinder, {id: "skeleton", x:0,
< y:0, height: viewfinder.height, width: viewfinder.width})

skeletonItem.skeletons.push(skeleton)

After each skeleton is generated, they are stored in an array to allow for further use.

After generating a skeleton, some display properties can be modified. The below code shows examples of

modifying the skeleton’s color.

// Redefine the first skeleton
skeletonItem.skeletons[0] .skeletonConnectionsColorArray =

< ["green",'"green", "green", "green",
"green', "green', "yellow', "green', "yellow", "yellow", "yellow", "yellow"]
skeletonItem.skeletons[0].skeletonNodesColorArray =

< ["blue", "blue", "blue", "blue",
"blue", "green", "green", "green", "green", "green", "green", "yellow", "yellow",
"yellow', "yellow", "yellow", "yellow"]
skeletonItem.skeletons[0] .define()
//Redefine the second skeleton
skeletonItem.skeletons[1].connectionColor = "purple'
skeletonItem.skeletons[1] .nodeColor = "purple'
skeletonItem.skeletons[1].definel()

The nodes that are connected can also be modified by redefining the connections array. The default connec-
tions array to display the PoseNet skeleton is shown below. It shows which pairs of nodes are connected in

the skeleton.

property var connections: [[5,7],[6,8],[7,9],[8,10]1,[5,11],[5,6],
(11,12],(6,12],(11,13],[12,14],[13,15], [14,16]]

The first skeleton is redefined to individually set the color of each node and connection line. The second
skeleton is redefined to set the color of all nodes and connection lines to purple.

To automatically call functions as the application starts up, the Component.onCompleted signal is used.

Once a poses keypoints are returned, each skeleton has its nodes and connection line locations reset using

the returned keypoints.

Appendix

Setting a Normalization

Normalization of pixel intensity is a common practice in image recognition models. Generally, applying a

normalization to training images will allow a model to converge faster and thus it is commonly required to

Au-Zone Technologies Inc. 11

DeepViewRT PoseNet Skeletons Demo QML

add the same normalization to images input for classification.

The default normalization will apply no normalization to the pixel intensities. Whitening normalization is a
method of decorrelating the features of data and placing them on a uniform scale by lineatly scaling the data
to have a mean of 0 and variance of 1. Whitening is called per_image_standardization in Tensorflow. For a
signed normalization, the pixel intensities will be converted from their current range to a range of [-1...1].
For an unsigned normalization, the pixel intensities will be converted from their current range to a range of
[0...1].

All PoseNet models used Signed normalization

Custom Models

The sample uses a pre-trained PoseNet from TensorFlow which is then converted to DeepView RTM.

For easily converting a model to DeepView RTM format, the Model Converter GUI application can be

used.

Au-Zone Technologies Inc. 12

	Introduction
	Obtaining Models
	Sample Project
	Sample Project Architecture
	PoseNet Model
	ProcessSkeleton.cpp
	decodeMulti.cpp
	QML
	Camera QML Type
	VideoOutput QML Type
	DeepViewRT QML Types
	Model
	Loading a Model
	VideoCapture
	ProcessSkeleton
	Overlay

	Appendix
	Setting a Normalization
	Custom Models

